Fractal dimension and universality in avascular tumor growth.
نویسندگان
چکیده
For years, the comprehension of the tumor growth process has been intriguing scientists. New research has been constantly required to better understand the complexity of this phenomenon. In this paper, we propose a mathematical model that describes the properties, already known empirically, of avascular tumor growth. We present, from an individual-level (microscopic) framework, an explanation of some phenomenological (macroscopic) aspects of tumors, such as their spatial form and the way they develop. Our approach is based on competitive interaction between the cells. This simple rule makes the model able to reproduce evidence observed in real tumors, such as exponential growth in their early stage followed by power-law growth. The model also reproduces (i) the fractal-space distribution of tumor cells and (ii) the universal growth behavior observed in both animals and tumors. Our analyses suggest that the universal similarity between tumor and animal growth comes from the fact that both can be described by the same dynamic equation-the Bertalanffy-Richards model-even if they do not necessarily share the same biological properties.
منابع مشابه
Entropy Production Rate for Avascular Tumor Growth
The entropy production rate was determined for avascular tumor growth. The proposed formula relates the fractal dimension of the tumor contour with the quotient between mitosis and apoptosis rate, which can be used to characterize the degree of proliferation of tumor cells. The entropy production rate was determined for fourteen tumor cell lines as a physical function of cancer robustness. The ...
متن کاملTwo Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization
Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, wh...
متن کاملLaplacian growth and diffusion limited aggregation: different universality classes.
It had been conjectured that diffusion limited aggregates and Laplacian growth patterns (with small surface tension) are in the same universality class. Using iterated conformal maps we construct a one-parameter family of fractal growth patterns with a continuously varying fractal dimension. This family can be used to bound the dimension of Laplacian growth patterns from below. The bound value ...
متن کاملبررسی شارش فراکتالی سیالات ناهمگن روی سطوح شیبدار هموار و تعیین بعد فراکتالی و دسته جهانی آنها
Patterns formed by the flow of an inhomogeneous fluid (suspension) over a smooth inclined surface were studied. It was observed that fractal patterns formed. There exists a threshold angle for the inclination above which, global fractal patterns are formed. This angle depends on the particle size of the suspension. We observed that there are two fractal dimensions for these patterns, dependin...
متن کاملA stochastic mathematical model of avascular tumor growth patterns and its treatment by means of noises
Due to the rate increase in cancer incidence, many researchers in different fields have been conducting studies on cancer-related phenomena. Most studies are conducted to focus on cellular and molecular aspects of cancerous diseases and treatment strategies. Physicists have been using mathematical modeling and simulation to explain the growth pattern of tumors. Although most published studies i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 95 4-1 شماره
صفحات -
تاریخ انتشار 2017